Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
mBio ; 13(3): e0374221, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35475643

ABSTRACT

Lymphatic filariasis is a debilitating disease that afflicts over 70 million people worldwide. It is caused by the parasitic nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori. Despite substantial success, efforts to eliminate LF will likely require more time and resources than predicted. Identifying new drug and vaccine targets in adult filariae could help elimination efforts. This study's aim was to evaluate intestinal proteins in adult Brugia malayi worms as possible therapeutic targets. Using short interfering RNA (siRNA), we successfully targeted four candidate gene transcripts: Bma-Serpin, Bma-ShTK, Bma-Reprolysin, and Bma-LAD-2. Of those, Bma-LAD-2, an immunoglobulin superfamily cell adhesion molecule (IgSF CAM), was determined to be essential for adult worm survival. We observed a 70.42% knockdown in Bma-LAD-2 transcript levels 1 day post-siRNA incubation and an 87.02% reduction in protein expression 2 days post-siRNA incubation. This inhibition of Bma-LAD-2 expression resulted in an 80% decrease in worm motility over 6 days, a 93.43% reduction in microfilaria release (Mf) by day 6 post-siRNA incubation, and a dramatic decrease in (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Transmission electron microscopy revealed the loss of microvilli and unraveling of mitochondrial cristae in the intestinal epithelium of Bma-LAD-2 siRNA-treated worms. Strikingly, Bma-LAD-2 siRNA-treated worms exhibited an almost complete loss of pseudocoelomic fluid. A luciferase immunoprecipitation system assay did not detect anti-Bma-LAD-2 IgE in the serum of 30 LF patients, indicating that LF exposure does not result in IgE sensitization to this antigen. These results indicate that Bma-LAD-2 is an essential protein for adult Brugia malayi and may be an effective therapeutic target. IMPORTANCE Brugia malayi is a parasitic nematode that can cause lymphatic filariasis, a debilitating disease prevalent in tropical and subtropical countries. Significant progress has been made toward eliminating the disease. However, complete eradication may require new therapeutics such as drugs or a vaccine that kill adult filariae. In this study, we identified an immunoglobulin superfamily cell adhesion molecule (Bma-LAD-2) as a potential drug and vaccine candidate. When we knocked down Bma-LAD-2 expression, we observed a decrease in worm motility, fecundity, and metabolism. We also visualized the loss of microvilli, destruction of the mitochondria in the intestinal epithelium, and loss of pseudocoelomic fluid contents after Bma-LAD-2 siRNA treatment. Finally, we demonstrated that serum from filaria-infected patients does not contain preexisting IgE to Bma-LAD-2, which indicates that this antigen would be safe to administer as a vaccine in populations where the disease is endemic.


Subject(s)
Brugia malayi , Cell Adhesion Molecules , Elephantiasis, Filarial , Helminth Proteins , Animals , Brugia malayi/genetics , Cell Adhesion , Cell Adhesion Molecules/genetics , Elephantiasis, Filarial/drug therapy , Helminth Proteins/genetics , Humans , Immunoglobulin E/blood , RNA, Small Interfering/genetics
2.
PLoS Negl Trop Dis ; 13(9): e0007687, 2019 09.
Article in English | MEDLINE | ID: mdl-31513587

ABSTRACT

Lymphatic filariasis (LF), a morbid disease caused by the tissue-invasive nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori, affects millions of people worldwide. Global eradication efforts have significantly reduced worldwide prevalence, but complete elimination has been hampered by limitations of current anti-filarial drugs and the lack of a vaccine. The goal of this study was to evaluate B. malayi intestinal UDP-glucuronosyltransferase (Bm-UGT) as a potential therapeutic target. To evaluate whether Bm-UGT is essential for adult filarial worms, we inhibited its expression using siRNA. This resulted in a 75% knockdown of Bm-ugt mRNA for 6 days and almost complete suppression of detectable Bm-UGT by immunoblot. Reduction in Bm-UGT expression resulted in decreased worm motility for 6 days, 70% reduction in microfilaria release from adult worms, and significant reduction in adult worm metabolism as detected by MTT assays. Because prior allergic-sensitization to a filarial antigen would be a contraindication for its use as a vaccine candidate, we tested plasma from infected and endemic normal populations for Bm-UGT-specific IgE using a luciferase immunoprecipitation assay. All samples (n = 35) tested negative. We then tested two commercially available medicines known to be broad inhibitors of UGTs, sulfinpyrazone and probenecid, for in vitro activity against B. malayi. There were marked macrofilaricidal effects at concentrations achievable in humans and very little effect on microfilariae. In addition, we observed that probenecid and sulfinpyrazone exhibit a synergistic macrofilaricidal effect when used in combination with albendazole. The results of this study demonstrate that Bm-UGT is an essential protein for adult worm survival. Lack of prior IgE sensitization in infected and endemic populations suggest it may be a feasible vaccine candidate. The finding that sulfinpyrazone and probenecid have in vitro effects against adult B. malayi worms suggests that these medications have promise as potential macrofilaricides in humans.


Subject(s)
Brugia malayi/drug effects , Brugia malayi/enzymology , Glucuronosyltransferase/metabolism , Albendazole/pharmacology , Animals , Antigens, Helminth/blood , Brugia malayi/immunology , Brugia malayi/metabolism , Drug Therapy, Combination , Elephantiasis, Filarial/drug therapy , Elephantiasis, Filarial/prevention & control , Female , Filaricides/pharmacology , Glucuronosyltransferase/antagonists & inhibitors , Glucuronosyltransferase/genetics , Humans , Immunoglobulin E/blood , Intestines/enzymology , Microfilariae/drug effects , Movement , Probenecid/pharmacology , RNA, Small Interfering , Sulfinpyrazone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...